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Abstract

This study investigated the value of information from both magnetic resonance imaging and magnetic resonance spectroscopic
imaging (MRSI) to automated discrimination of brain tumours. The influence of imaging intensities and metabolic data was tested
by comparing the use of MR spectra from MRSI, MR imaging intensities, peak integration values obtained from the MR spectra
and a combination of the latter two. Three classification techniques were objectively compared: linear discriminant analysis, least
squares support vector machines (LS-SVM) with a linear kernel as linear techniques and LS-SVM with radial basis function kernel
as a nonlinear technique. Classifiers were evaluated over 100 stratified random splittings of the dataset into training and test sets.
The area under the receiver operating characteristic (ROC) curve (AUC) was used as a global performance measure on test data. In
general, all techniques obtained a high performance when using peak integration values with or without MR imaging intensities. For
example for low- versus high-grade tumours, low- versus high-grade gliomas and gliomas versus meningiomas, the mean test AUC
was higher than 0.91, 0.94, and 0.99, respectively, when both MR imaging intensities and peak integration values were used. The use
of metabolic data from MRSI significantly improved automated classification of brain tumour types compared to the use of MR
imaging intensities solely.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is an important
noninvasive tool for identifying the location and size of
brain tumours, because it yields morphological and ana-
tomical information about the brain tissue. However,
conventional MRI has a limited specificity is rather non-
specific in determining the underlying type of brain tu-
mour and grade [1,2]. More recently developed MR
techniques like diffusion-weighted MRI, perfusion-
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weighted MRI, and magnetic resonance spectroscopic
imaging (MRSI) are promising new techniques in the
characterization of brain tumours [3,4]. Diffusion-
weightedMRI visualizes the tissue structure and is useful
for assessing tumour cellularity,while perfusion-weighted
MRI provides measurements that reflect changes in tu-
mour vasculature and tumour grading. MRSI or multi-
voxel magnetic resonance spectroscopy (MRS) provides
chemical information about metabolites present in nor-
mal and abnormal tissue [5–8]. Therefore, the differentia-
tion of abnormal brain tissues, including brain tumours,
from normal brain forms a potentially major clinical
application of these new techniques. In general, diagnosis
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of brain tumours is based on themicroscopic examination
of tissue obtained by a biopsy, which includes risks asso-
ciated with anesthesia and surgery. It would be very ben-
eficial to the patient if the invasive biopsy could be guided
or even avoided by the use of noninvasive techniques like
diffusion-weighted MRI, perfusion-weighted MRI, and
MRS(I). In this study, we combined the use of conven-
tional MRI intensities and one of the new techniques,
more specifically MRSI.

Several studies [9–18] have shown progress in auto-
mated pattern recognition for brain tumour classification
usingMRI orMRS(I). However, currently only few stud-
ies (e.g., [14,15]) have used a combination of MRI and
MRSI features for classification of brain tumours. To en-
hance the diagnostic capabilities in clinical practice, we
investigated whether the combined use of MR imaging
intensities andmetabolic data fromMRSI could improve
the discrimination between several brain tumour and nor-
mal brain tissue types. Although the radiologist also uses
spatial andmorphological information present in theMR
images, these features were not taken into account in this
study, as they are difficult to quantify. By comparing the
results obtained, we evaluated the strength of both, MR
imaging intensities andmetabolic data fromMRSI, in dis-
criminating brain tissue types.

We considered linear as well as nonlinear classifica-
tion techniques applied to several input features, such
as short echo time magnitude spectra, imaging intensi-
ties, peak integration values obtained from the spectra
and a combination of the latter two. The algorithms
were designed to extract the most important features
which were then used to classify each spectrum into
the corresponding tumour type. As classification is
required to be objective and user-friendly, all techniques
were automated. The purpose of this paper was twofold:

� To investigate the discriminatory value of MRI inten-
sities and metabolic data extracted from MRSI for
automated brain tumour diagnosis. This analysis also
provides the typical AUC values achievable for sev-
eral relevant diagnostic problems of brain tumours.

� To apply and compare several classification tech-
niques, including the investigation of the influence
of the input features used.
2. Materials

2.1. Data

Data from 25 patients with a brain tumour and 4 vol-
unteers were selected from the database developed in the
framework of the EU funded INTERPRET project
(IST-1999-10310) [19]. All data were provided by the
acquisition center UMCN (University Medical Center
Nijmegen), Nijmegen (The Netherlands). Each case
was clinically validated. The patients� tumour type was
determined by a central consensus histopathological val-
idation. For one of the 25 patients no consensus was
reached. Therefore, the data from the tumour region
of this patient were not used.

The dataset containedMR images as well asMR spec-
tra, acquired and preprocessed as described in [14]. For
each subject, stacked MR images of cross-sections of
the whole brain at four contrasts were acquired: T1- and
T2-weighted images, a proton density weighted image
and a gadolinium enhanced (Gd-DTPA)T1-weighted im-
age (256 · 256, FOV = 200 mm, slice thickness = 5 mm).
The image valueswill further be labeled asT1,T2, PD, and
GD. No Gd-DTPA administration was applied to the
healthy volunteers. Besides MR images, also 1H MRSI
data were acquired for each subject, both with and with-
out water suppression using a 16 · 16 2D STEAM 1H
MRSI sequence with acquisition parameters TR = 2000
or 2500 ms, TE = 20 ms, slice thickness 12.5 or 15 mm,
FOV = 200 mm, SW = 1000 Hz, 1024 data points. The
position of the MRSI slice was chosen according to the
slice position of the GD image which showed the largest
GD enhancement.

To ensure that image pixels from subsequent images
originate from the same spatial location, the images
were co-aligned [14]. All MRSI data were semi-automat-
ically preprocessed (cf. [14]), which involved:

� Filtering of the k-space data by a Hanning filter of
50% using the LUISE software package (Siemens,
Erlangen, Germany).

� Zero filling to 32 · 32, which involved an increase of
the apparent spatial resolution with a factor of 2.

� Spatial 2D Fourier transformation to obtain time
domain signals for each voxel.

� Correction for eddy current effects in the MR spectra
using a method which prevents the occasional occur-
rence of eddy current correction induced artefacts
[20]. This process resulted in a frequency alignment
and zero order phasing of the MR spectra.

� Removal of the dominating residual water using
HLSVD [21], with 12 singular values and 4.0–
6.0 ppm as residual water region.

� Frequency alignment was performed semi-automati-
cally. First, the position of the NAA peak (N-acetyl-
aspartate, 2CH3-group) in the mean spectrum of an
MRSI dataset was set to 2.02 ppm. The obtained shift
was used to reset each spectrum of the dataset in the
time domain automatically.

� First order phase correction was also manually per-
formed on the mean spectrum of a dataset. The
obtained first order time instant was used to automat-
ically correct each spectrum in the dataset.

� Fourier transformation was applied to the time
domain data to obtain frequency spectra.



Table 1
Number of data for each type of brain tissue (brain tumour or healthy tissue)

Label Pathology Number of data Number of subjects

1 Normal from volunteers 142 4
2 Normal from patients 76 4
3 CSF 100 8
4 Gliomas, grade II 176 10
5 Gliomas, grade III 57 4
6 Gliomas, grade IV 70 7
7 Meningiomas 48 3

Total 669 29

The first and second columns give the label of the classes (from 1 till 7) and the pathology. The third and fourth columns display the number of data
and subjects for each class. Note that the total number of subjects was not simply the summation of the number of subjects per class, because for
several patients data were available from brain tumour as well as from healthy tissue.
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The set of validated data consisted of 10 grade II, 4
grade III, and 7 grade IV gliomas and 3 meningiomas,
which gave us 4 classes of brain tumours. From each pa-
tient, data were selected from several voxels, identified
as lying in the tumour area. Besides brain tumour data,
also data from cerebro spinal fluid (CSF) from patients
and normal brain tissue from volunteers and patients
were selected. Data from all subjects with the same
pathology were combined into one class, which resulted
in the following 7 classes of pathologies (Table 1):

(1) normal tissue from volunteers: normal tissue from
healthy persons,

(2) normal tissue from patients: apparently normal
tissue from the contralateral half of the brain of
patients,

(3) cerebro spinal fluid (CSF): CSF from patients,
where the ventricles were clearly visible and the
voxels were located as far from the tumour as pos-
sible. Unfortunately, no CSF voxels could be
selected from volunteers, since the MRSI slices
of volunteers did not include the ventricles.

(4) grade II gliomas: diffuse astrocytomas (90 voxels
from 5 patients), oligodendrogliomas (22 voxels
from 2 patients), and mixtures (64 voxels from 3
patients),

(5) grade III gliomas: anaplastic astrocytomas (4 vox-
els from 1 patient), oligodendrogliomas (25 voxels
from 2 patients), and mixtures (28 voxels from 1
patient),

(6) grade IV gliomas: glioblastomas,
(7) meningiomas.
3. Methods

3.1. Input features

In this paper, an input pattern was either an MR
spectrum, a set of quantified values from the MR spec-
trum, a set of imaging intensities or a combination of the
latter two input types. This enabled us to investigate
whether the combination of imaging and spectroscopic
information can improve the performance for pattern
recognition of brain tumours. The following input fea-
tures were considered:

� Water normalized magnitude spectra (see Figs. 1 and
2). The amplitude of the water unsuppressed signal
was estimated as described in [9]. Then each spectral
value in the preprocessed water suppressed spectrum
was divided by the resulting estimate of the intensity
of the water peak. Only the spectral values in the
region of interest (0.5–4.0 ppm) were used as input
features.

� Metabolite amplitudes obtained by peak integration.
Short echo time 1H MRSI signals are characterized
by the presence of a partially unknown broad baseline
underlying the resonances of the metabolites of inter-
est, that hinders the assessment of the intensity (e.g.,
by peak integration) of low weight molecules. To
remove this broad baseline a simple baseline correc-
tion [9,14,22] was applied as additional preprocessing
step prior to the first order phase correction. This was
performed as described in [14]. Amplitude estimates
were then obtained from the baseline corrected fre-
quency spectra using peak integration within a spec-
tral range of 0.13 ppm. These selected frequency
regions correspond to resonances from metabolites
and lipids that are assumed to be characteristic to dis-
tinguish between tumour types [6,7,23–26]. As short
echo time 1H MR in vivo spectra are characterized
by substantial peak overlap and a relatively low spec-
tral resolution at the clinical field strength of 1.5 T, a
particular region might cover resonances of more
than one metabolite. Such regions are [27]: L2 (lipids
at �0.9 ppm; 0.835–0.965), L1 (lipids at �1.2) + Lac

(lactate, 3CH3-group) + Ala (alanine, 1CH3-group)
(1.265–1.395 ppm), NAA (2CH3-group; 1.955–
2.085 ppm), Glx (glutamate/glutamine, 3CH2-group;
2.135–2.265), Cr (creatine, N(CH3)-group; 2.955–



Fig. 1. Mean water normalized magnitude 1H MR spectra (TE = 20 ms) of the considered classes: class 1 (top-left), class 2 (top-right), class 3
(bottom-left), and class 4 (bottom-right) correspond to the normal tissue of volunteers, normal tissue of patients, CSF, and gliomas of grade II. The
solid lines are the means, while the dotted lines are the means plus the standard deviations of each class.
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3.095), Cho (choline, N(CH3)3-group; 3.135–
3.265 ppm), Tau (taurine, 1CH2-group; 3.375–
3.505 ppm), mI (myo-Inositol, 1CH-, 3CH-, 4CH-
and 6CH-group) + Gly (glycine, 2CH2-group)
(3.495–3.625 ppm), Glx + Ala (2CH-groups; 3.685–
3.815 ppm), and Cr (2CH2-group; 3.885–4.015 ppm).
The resulting peak integration values were then water
normalized as described above.

� Imaging intensities (see Figs. 3 and 4). For each of the
images (T1, T2, PD, and GD), an image value was
extracted, producing four additional variables. To
obtain the same spatial resolution of both MRI and
MRSI data, the resolution of the MRI data was low-
ered to that of the MRSI grid by averaging the image
pixels within each spectroscopic voxel. Each intensity
value was divided by the highest intensity in the cor-
responding downsampled image and scaled to the
same range as the spectral data. No GD information
was available for the volunteers. Instead the T1-image
was used, under the assumption that no GD enhance-
ment would occur in the brain tissue of volunteers.
However, this is an approximation as Gd-DTPA typ-
ically causes an increase in intensity in the blood
vessels.
Selection of the data used was based on the visual
inspection of the low and high resolution images and
MR spectra. To obtain data for a specific histopatholo-
gical class, the following procedure was used for each
patient within this class. The four MR images were plot-
ted together with a segmented image in which voxels
were clustered using a model-based clustering algorithm
[28] as described in [29]. The clustering provides an
objective segmentation based on similarities obtained
from the MR images as well as MR spectroscopic fea-
tures, and thus is considered to be helpful in the selec-
tion of voxels. For each pathology, only voxels were
included in the dataset if their corresponding MR spec-
tra were found to be typical for that pathology by an ex-
pert in MR spectroscopy. Since tumours are known to
be heterogeneous, this approach was considered better
than for example taking all spectra from one segment.
Neighbouring voxels were not selected to avoid too
much mutual correlation and as such to ensure that
samples were as independent as possible. Although the
method of class selection is subjective, we think it is
appropriate since in tumour diagnosis a ‘‘ground truth’’
is not available and the number of patients for each spe-
cific class is low.



Fig. 2. Mean water normalized magnitude 1H MR spectra
(TE = 20 ms) of the considered classes: class 5 (top), class 6 (middle),
and class 7 (bottom) correspond to gliomas of grade III, grade IV, and
meningiomas. The solid lines are the means, while the dotted lines are
the means plus the standard deviations of each class.
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3.2. Experimental approach

Binary classification was performed by linear discrim-
inant analysis (LDA) [30,31], least squares support vec-
tor machines (LS-SVM) [32,33] with linear or radial
basis function (RBF) kernel, which were also applied
in two previous extensive studies for classification based
on long [12] and short echo time 1H MRS [9].

To perform meaningful data-analysis in a high
dimensional space, a sufficiently large amount of train-
ing data is required. This limitation can be overcome,
e.g., by dimensionality reduction, which decreases the
amount of complexity and risk of overfitting and also
simplifies the calculation. In fact, peak integration
(Section 3.1) is a feature extraction method that re-
duces the input dimension and therefore uses prior
knowledge about the most discriminatory features in
the spectrum. As the input dimension is already small
when using imaging intensities (dimension 4), peak
integration values (dimension 10) or the combination
of both (dimension 14), dimensionality reduction is
only required when using magnitude spectra (dimen-
sion 231).

Especially LDA suffers from this dimensionality
problem, while LS-SVM is able to work without any
prior dimensionality reduction, thanks to the primal-
dual aspects of the model, even in case of a relatively
low number of input data. Therefore, the use of prin-
cipal component analysis (PCA) as a feature extrac-
tion technique was only needed prior to LDA. The
231 given spectral variables were reduced by PCA that
retained those components that account for a larger
variance than the average over all individual compo-
nents [34]. This strategy was different to the one taken
in [9,12], in which only the largest components were
selected that explain a 75% of total variance. In
[9,12] it was unfeasible to retain more components
due to rank deficiency problems related to a too small
number of training samples. Nevertheless, if feasible, it
is more appropriate to retain a certain number of
components, as performed by the strategy taken in
this study.

In certain problems, nonlinear techniques can improve
the classification performance [33]. Therefore, in addition
to the use of linear kernels in LS-SVM classifiers, we also
applied LS-SVM classifiers with RBF kernels. All input
patterns were classified using KULeuven�s LS-SVMlab
MATLAB/C toolbox [33,35,36] for LS-SVM classifica-
tion with both linear and RBF kernels. Linear as well as
nonlinear classifiers were applied automatically, includ-
ing feature selection, (hyper-) parameter estimation,
training and testing.

LS-SVM classifiers require the tuning of a set of
hyperparameters to achieve a high level of performance.
This tuning was performed in the same way as described
in [12]. The experiments consisted of the following steps,
similar as in [9,12]:

(1) divide the dataset in a training set (2/3 of the data)
and a test set (remainder),

(2) train the classifiers using the training set,
(3) evaluate the performance using the test set.



Fig. 3. Boxplots of the imaging intensities of the considered classes: class 1 (top-left), class 2 (top-right), class 3 (bottom-left), and class 4 (bottom-
right) correspond to the normal tissue of volunteers, normal tissue of patients, CSF, and gliomas of grade II.
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Stratified random sampling was used while dividing
the dataset to preserve the proportion of the classes.
The aforementioned procedure was repeated 100 times
to avoid bias possibly introduced by selection of a spe-
cific training and test set. In this way we tried to obtain
a representative test performance. The test performance
was measured by the mean AUC and its pooled stan-
dard error calculated from 100 randomizations. As dis-
cussed by Obuchowski [37], the area under the receiver
operating characteristic (ROC) curve is a good sum-
mary measure of the test accuracy. The results were
tested for significant differences by the z test [38], ap-
plied as in [12].
4. Results

We evaluated the following binary classifications of
brain tissue types:

� Healthy versus tumour tissue (classes 1, 2 and 3; 318
data versus 4, 5, 6, and 7; 351 data; Table 2). The
resulting mean AUC was for all techniques and input
patterns higher than 0.95. The performance based on
imaging intensities alone was significantly lower with
respect to using peak integration values (e.g., when
using LDA, p < 0.01) or the combination of imaging
intensities and peak integration values (e.g., when
using LDA, p < 0.001). Also using magnitude spectra
was significantly worse than using the combination of
imaging intensities and peak integration values for
LDA and LS-SVM with a linear kernel (p < 0.05).
In addition, using solely imaging intensities, LDA
and LS-SVM with a linear kernel reached a signifi-
cantly lower performance than LS-SVM with an
RBF kernel (both p < 0.05).

� Low- versus high-grade tumours (classes 4 and 7; 224
data versus 5 and 6; 127 data; Table 3). Classification
based on imaging intensities alone was poor, while
discrimination based on peak integration values was
significantly better, compared to classification using
imaging intensities alone (with, p < 10�8, <10�8, and
<0.001, respectively, in case of LDA, LS-SVM lin,
and LS-SVM RBF). Also the performances obtained
when using magnitude spectra and the combination
of imaging intensities and peak integration values
were significantly higher than those obtained using
imaging intensities alone. LS-SVM RBF achieved a
significantly higher performance with respect to
LDA and LS-SVM lin, when using imaging intensi-
ties (p < 0.001), peak integration (p < 0.05) and the
combination of imaging intensities and peak integra-
tion values (p < 0.001). Based on magnitude spectra,
LS-SVM RBF was significantly better than LDA
using 9 PCs (p < 0.05). Based on imaging intensities,
peak integration, and their combination, LS-SVM
RBF also achieved a significantly higher performance
than LDA and LS-SVM with a linear kernel.



Fig. 4. Boxplots of the imaging intensities of the considered classes:
class 5 (top), class 6 (middle), and class 7 (bottom) correspond to
gliomas of grade III, grade IV, and meningiomas.
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� Low- versus high-grade gliomas (class 4; 176 data ver-
sus 5 and 6; 127 data; Table 4). The classification prob-
lem resembles that of low- versus high-grade tumours,
but reached in general a slightly higher performance.
Table 2
Average test performance for classification of healthy versus tumour tissue f

Classifier MRI Peak integration

LDA 0.9569 ± 0.0128 0.9912 ± 0.0042
LS-SVM lin 0.9570 ± 0.0128 0.9921 ± 0.0039
LS-SVM RBF 0.9858 ± 0.0065 0.9974 ± 0.0036

MRI, imaging intensities; peak integration, peak integration values; MRI/p
magnitude spectra, water normalized magnitude spectra. Performance measu
When using magnitude spectra, PCA was applied prior to LDA. The numb
amount of variance explained by those components is mentioned between b
This might be partially due to the lower heterogeneity
in the two compared classes, while in low- versus high-
grade tumours also nongliomas (namely meningio-
mas) were included. Once more, peak integration
and the combination of imaging intensities and peak
integration provided a significantly better perfor-
mance than using imaging intensities alone. For
example, when comparing the use of peak integration
with imaging intensities we obtained p < 0.001 (LDA,
LS-SVM lin) and p < 0.01 (LS-SVM RBF) and the
significance was even stronger for the combination
of imaging intensities and peak integration values.
For this problem, classification with LS-SVMs using
magnitude spectra also reached a very high mean
AUC, for which p < 0.001 (LDA), p < 0.00001 (LS-
SVM lin), and <0.01 (LS-SVM RBF) with respect to
imaging intensities. From Figs. 3 and 4 we remark that
the imaging intensities for class 4 indeed highly res-
semble those of classes 5 and 6, which explains the
low performance based on the imaging intensities.
LS-SVMs achieved a significantly better result than
LDA when using magnitude spectra, while LS-SVM
RBF provided a significantly higher AUC than LDA
and LS-SVM lin when using imaging intensities.

� Gliomas versus meningiomas (classes 4, 5, and 6; 303
data versus class 7; 48 data; Table 5). Note that the
same data were used as in low- versus high-grade
tumours, but now gliomas were differentiated from
meningiomas. At least a mean AUC of 0.99 was
reached when based on peak integration or the com-
bination of imaging intensities and peak integration
(AUC > 0.85 when using imaging intensities alone).
For LDA and LS-SVM lin, using peak integration,
combined with imaging intensities or not, gave a sig-
nificantly better result than using imaging intensities
(p < 0.001 for all cases). However, no significant dif-
ferences were found for LS-SVM RBF with respect
to the input type used.

� Grade II versus grade III gliomas (class 4; 176 data
versus class 5; 57 data; Table 6). With respect to
the significant influence of the input features, we
observed the same as for low- versus high-grade glio-
mas, except when using LS-SVM RBF. In case of
LS-SVM RBF, only the combination of imaging
intensities and peak integration values gave a signifi-
rom 100 runs of stratified random splittings

MRI/peak integration Magnitude spectra

0.9991 ± 0.0009 0.9828 ± 0.0066(10;89.7%)

0.9991 ± 0.0008 0.9755 ± 0.0097
0.9998 ± 0.0003 0.9851 ± 0.0076

eak integration, imaging intensities and peak integration values; and
re for each classifier are the mean AUC and its pooled standard error.
er of principal components that was given as input to LDA and the
rackets (row LDA, column magnitude spectra).



Table 3
Classification of low- versus high-grade tumours

Classifier MRI Peak integration MRI/peak integration Magnitude spectra

LDA 0.6239 ± 0.0543 0.9210 ± 0.0243 0.9195 ± 0.0255 0.9193 ± 0.0265(9;92.8%)

LS-SVM lin 0.6239 ± 0.0543 0.9328 ± 0.0220 0.9260 ± 0.0240 0.9573 ± 0.0189
LS-SVM RBF 0.8469 ± 0.0385 0.9827 ± 0.0124 0.9918 ± 0.0072 0.9797 ± 0.0161

For further explanation we refer to Table 2.

Table 5
Classification of gliomas versus meningiomas

Classifier MRI Peak integration MRI/peak integration Magnitude spectra

LDA 0.8593 ± 0.0406 0.9945 ± 0.0056 0.9961 ± 0.0040 0.9890 ± 0.0083(9;92.8%)

LS-SVM lin 0.8590 ± 0.0407 0.9947 ± 0.0055 0.9964 ± 0.0039 0.9889 ± 0.0092
LS-SVM RBF 0.9520 ± 0.0303 0.9985 ± 0.0025 0.9989 ± 0.0019 0.9912 ± 0.0092

For further explanation we refer to Table 2.

Table 4
Classification of low- versus high-grade gliomas

Classifier MRI Peak integration MRI/peak integration Magnitude spectra

LDA 0.7429 ± 0.0517 0.9452 ± 0.0223 0.9563 ± 0.0203 0.9339 ± 0.0240(9;93.4%)

LS-SVM lin 0.7431 ± 0.0517 0.9453 ± 0.0222 0.9589 ± 0.0193 0.9809 ± 0.0114
LS-SVM RBF 0.8774 ± 0.0354 0.9774 ± 0.0158 0.9920 ± 0.0084 0.9896 ± 0.0081

For further explanation we refer to Table 2.

Table 6
Classification of grade II versus grade III gliomas

Classifier MRI Peak integration MRI/peak integration Magnitude spectra

LDA 0.7799 ± 0.0689 0.9278 ± 0.0310 0.9480 ± 0.0313 0.9339 ± 0.0274(9;93.1%)

LS-SVM lin 0.7799 ± 0.0688 0.9290 ± 0.0306 0.9488 ± 0.0308 0.9669 ± 0.0196
LS-SVM RBF 0.9018 ± 0.0410 0.9706 ± 0.0217 0.9907 ± 0.0098 0.9861 ± 0.0141

For further explanation we refer to Table 2.
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cantly higher mean AUC than imaging intensities
alone (p < 0.05). Linear classification techniques gave
a significantly lower performance than LS-SVM RBF
when using imaging intensities (p < 0.05).
5. Discussion

5.1. Classification techniques

Tables 2–6 show that all classification techniques per-
formed very well, especially based on the peak integra-
tion values and the combination with imaging
intensities. In general, LDA is shown to be competitive
with linear LS-SVM classifiers, even when based on
the first principal components of the magnitude spectra.
Using all PCs that explain more variance than the aver-
age, LDA based on magnitude spectra reached a similar
performance as based on peak integration or the combi-
nation of imaging intensities and peak integration
values.
Nevertheless, in several cases a significant difference
was found, e.g., for the discrimination of low- and
high-grade gliomas, based on magnitude spectra both
kernel-based techniques reached a significantly higher
performance than PCA/LDA. However, not only the
classical linear LDA technique, but also the kernel-
based linear LS-SVM did not always reach the perfor-
mance of the nonlinear LS-SVM. This occurred for
the problem low- versus high-grade tumours based on
peak integration and the combination of imaging inten-
sities and peak integration.

For several problems, the unbalanced situation (e.g.,
gliomas versus meningiomas) or the relatively small
number of data available forms a limitation for training
(e.g., grade II versus grade III gliomas). Therefore, the
discrimination boundary might strongly correlate with
the training set. Especially LDA requires a significant
amount of data to be able to draw a linear separating
line between overlapping classes. Kernel-based tech-
niques are less sensitive to the amount of data and the
input dimension and are able to detect automatically
important characteristics independently of the input
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pattern. Hence, these techniques are able to obtain a
high performance even without any prior dimensionality
reduction, although dimensionality reduction may fur-
ther improve the results.

5.2. Imaging intensities versus metabolic data from MRSI

Although MRI is an established technique for the
characterization of brain tumours, it has a few limita-
tions that produce uncertainty for an accurate assess-
ment of the presence and extent of the tumour. In
practice, the contrast-enhancing lesion on an MR image
is often much smaller than the region of abnormal
metabolism [39,40]. From our results we observed that,
for some problems the use of imaging intensities alone
reached a significantly lower performance, e.g., for the
discrimination between low- and high-grade tumours.
This is in correspondence to the conclusion of [39–41],
that the MR imaging intensities are unable to fully ex-
plain the metabolic heterogeneity of brain tumours.

Scaling of the MR data is necessary to correct for ef-
fects independent of the tissue characteristics. As a result
of the scaling procedure, MR imaging intensities from
different subjects or acquired under different conditions,
should be more comparable. Although the applied scal-
ing method might not be fully appropriate, the proce-
dure yielded good classification results for healthy
versus tumour tissue and gliomas versus meningiomas.
Scaling with respect to healthy tissue might be an alter-
native method that possibly could improve results,
but—in contrast to the applied method—would involve
processing that is difficult to automate.

The obtained test performances based on metabolic
data are in agreement with our previous studies on short
and long echo time spectra reported in [9,12]. The results
were also similar with respect to those of other MRS(I)
studies [10,13–15,17], although these authors used other
performance measures than the test AUC. This confirms
the statement that spectroscopy is able to add valuable
information about the metabolic status of brain tu-
mours, which is in agreement with a few clinical com-
bined MRSI/MRI studies [39–41]. As such multivoxel
MRS could be very helpful for the diagnosis of brain tu-
mours in combination with conventional MRI.

However, automated discrimination between differ-
ent tumour types is still difficult, partially due to the fact
that only intensity values are used and no anatomical
(e.g., the location and homogeneity of the tumour) or
clinical information (e.g., complaints of the patient) is
included in the input features. To make an accurate
diagnosis a neuroradiologist exploits such clinical fea-
tures—in contradiction to most classification studies—
as they could be very specific for certain types of tu-
mour. For example, meningiomas are a type of tumour
of the meninges and are not really a type of brain tu-
mour, while gliomas are intracerebral tumours that start
in glial cells. In an MRI classification study [18] also sev-
eral other diagnostic factors were found to be important
for prediction of brain glioma like age, oedema, blood
supply, calcification and haemorrhage. Hence, adding
important anatomical and clinical information as input
features is expected to further improve automated diag-
nosis of brain tumours.

5.3. Several classification problems

If a classification technique is developed for diagnos-
tic purposes, then the technique should be able to distin-
guish healthy tissue from tumour tissue. Several
metabolic differences between normal cells and various
tumour types are reflected in MR spectra: the NAA

and Cr levels are lower in tumour spectra, while the
Cho level is higher. The applied techniques were able
to extract and exploit this differing pattern available in
imaging intensities and MR spectra. Healthy brain and
tumour tissue could be distinguished almost perfectly
from each other.

Classification of low- versus high-grade gliomas
reached a highmeanAUC (>0.93) using any input (except
imaging intensities or magnitude spectra with a low num-
ber of PCs given to LDA). A similar observation could be
made for gliomas versus meningiomas (AUC > 0.98),
low- versus high-grade tumours (AUC > 0.91) and grade
II versus grade III gliomas (AUC > 0.92).

Using the imaging intensities alone for discriminating
gliomas of grade II and grade III, a linear classifier
performed poorly. This might partially be due to the
unbalanced distribution of the data (176 data of class
4, and 57 of class 5). A significantly higher performance
was obtained by using peak integration or combining
the imaging intensities and peak integration. Also for
the discrimination between gliomas and meningiomas,
the use of peak integration and the combination of peak
integration and imaging intensities gave a significant
improvement with respect to using imaging intensities
alone. This was not the case when using LS-SVM with
an RBF kernel, since the performance was already high.
6. Conclusions

This study investigated the use of several classifica-
tion techniques for classification of brain tumours using
MR imaging intensities and metabolic data from MRSI.
The nonlinear technique LS-SVM with an RBF kernel
reached in several specific problems a significantly better
performance than the linear techniques. Although linear
classifiers also performed well, based on these data this
indicates that a few diagnostic problems seem to have
a nonlinear behaviour.

From current studies it is clear that 1H MRSI is an
important adjunct to the clinical imaging techniques
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for noninvasive diagnosis of viable tumours. For most
problems, binary classification based on imaging intensi-
ties and metabolic information from MRSI is very well
possible. The combined use of MR imaging intensities
and metabolic information significantly increased the
performance with respect to imaging intensities alone.
Also with respect to metabolic data alone, the combina-
tion of imaging intensities and metabolic data reached a
higher, although not significantly, performance. The re-
sults of this study strengthen the statement that imaging
intensities and metabolic data provide complementary
information for the accurate discrimination between
several brain tissue types. Therefore, we motivate the
integration of MRSI into a standard clinical examina-
tion which is performed for the diagnosis of brain tu-
mours. However, to enhance the quality of automated
diagnosis, it would be benificial that classification data-
sets also include several other relevant anatomical and
clinical parameters. This would enable pattern recogni-
tion people to develop and test classifiers that use as
much information as relevant.
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